Intriguing Sets in Finite Classical Polar Spaces

Weicong Li

joint with Tao Feng and Qing Xiang

Great Bay University

liweicong@gbu.edu.cn

September 29th, 2024

Weicong Li (GBU)

Intriguing Sets in Finite Classical Polar Space

September 29th, 2024

Strongly regular graphs

Definition

A strongly regular graph with parameters (v, k, λ, μ) is a k-regular graph with v vertices such that two distinct vertices have exactly λ or μ common neighbors according as they are adjacent or not.

Figure: The Peterson Graph, $(v, k, \lambda, \mu) = (10, 3, 0, 1)$

Weicong Li (GBU)

A strongly regular graph is

- a distance regular graph with diameter two;
- one of non-diagonal relations of a two-class symmetric association scheme.

In particular, any vertex-transitive graph with a rank-three permutation automorphism group is strongly regular.

¹A. E. Brouwer and H. Van Maldeghem. Strongly Regular Graphs, Cambridge University Press, 2022. https://homepages.cwi.nl/ aeb/math/srg/rk3/ \equiv > \equiv

Studies on strongly regular graphs²

Encyclopedia of Mathematics and Its Applications 182

STRONGLY REGULAR GRAPHS

Andries E. Brouwer and H. Van Maldeghem

 $^2A.~E.$ Brouwer and H. Van Maldeghem. Strongly Regular Graphs, Cambridge University Press, 2022. https://homepages.cwi.nl/ aeb/math/srg/rk3/ $\ensuremath{\blacksquare}$ $\ensuremath{\blacksquare}$

Weicong Li (GBU)

Intriguing Sets in Finite Classical Polar Space

September 29th, 2024 5 / 40

Let Γ be a (primitive) SRG with parameters (v, k, λ, μ) with vertex set V and adjacency matrix A. The spectrum of Γ is $\{k^1, r^f, s^g\}$.

Definition

A partition $\{Y_1, Y_2\}$ of V is called equitable if each vertex of Y_i is adjacent to precisely e_{ij} vertices of Y_j , $1 \le i, j \le 2$.

For a subset Y of vertices in V, we define its characteristic row vector χ_Y such that $\chi_Y(v) = 1$ iff $v \in Y$. Then

$$\chi_{Y_1} A = e_{11} \chi_{Y_1} + e_{21} \chi_{Y_2}, \qquad \chi_{Y_2} A = e_{12} \chi_{Y_1} + e_{22} \chi_{Y_2}$$

or equivalently

$$(\chi_{Y_1} - \frac{|Y_1|}{|V|}\mathbf{1})A = (e_{11} - e_{12})(\chi_{Y_1} - \frac{|Y_1|}{|V|}\mathbf{1}).$$

Here $|Y_1|e_{12} = |Y_2|e_{21}$, which is obtained by double counting.

Definition

If Y is a set of vectices such that $Y, V \setminus Y$ form an equitable partition, then Y is a regular set of Γ .

Remark:

- (1) The regular sets of Γ divide into two types according as the corresponding eigenvalue is r or s.
- (2) If $H \leq Aut(\Gamma)$ has two orbits on V, then the two orbits form an equitable partition and so each is a regular set.

Geometrically defined strongly regular graphs

э

Let V be a vector space of dim n over $\mathbb{F} = \mathbb{F}_q$. The classical projective geometry PG(V) (or PG(n-1,q)) consists of the following objects of n-1 different types:

- points: the 1-dim subspaces of V;
- 2 lines: the 2-dim subspaces of V (if any);
- In planes: the 3-dim subspaces of V (if any);
- solids: the 4-dim subspaces of V (if any);
- **5** · · · · · ;
- hyperplanes: the (n-1)-dim subspaces of V (if any),

and the relation between the objects are defined via inclusion.

Theorem (Birkhoff-von Neumann)

Let κ be a non-degenerate σ -sesquilinear reflexive form on V. Up to a scalar factor, κ is one of the following types:

• Alternating:
$$\kappa(u, u) = 0, \forall u \in V$$
.

2 Symmetric:
$$\kappa(u, v) = \kappa(v, u), \forall u, v \in V$$
.

3 Hermitian:
$$\kappa(u, v) = \kappa(v, u)^{\sigma}$$
, $\forall u, v \in V$, where $o(\sigma) = 2$.

11 / 40

Let κ be a non-degenerate form on $V = \mathbb{F}_q^n$ given as above .

- A vector u is *isotropic* if $\kappa(u, u) = 0$.
- **2** A subspace U is *totally isotropic* if $\kappa(u, v) = 0, \forall u, v \in U$.
- For a nonzero vector u, define its perp as

$$u^{\perp} = \{ v \in V : \kappa(u, v) = 0 \}.$$

The *polar space* associated to a nondegenerate form κ on V is the geometry whose *points*, *lines*, *planes*, \cdots are the totally isotropic subspaces of V of *dimension* 1, 2, 3, \cdots .

Theorem

Let $Q: V \to F$ be a quadratic form with a non-degenerate bilinear form. If $\theta: U_1 \to U_2$ is an isometry between two subspaces, then there is an isometry $\hat{\theta}: V \to V$, s.t., $\theta = \hat{\theta}|_{U_1}$.

As a corollary, the maximal t.s./t.i. subspaces of a polar space have the same (affine) dimension, called the rank of the polar space.

The symplectic polar space W(2)

Figure: W(2) = GQ(2,2), $(v, k, \lambda, \mu) = (15, 6, 1, 3)$

Let Γ be the collinearity graph of the polar graph $\mathcal{P} {:}$

(a) vertex set: the isotropic or singular points;

(b) adjacency:
$$\langle x \rangle \sim \langle y \rangle$$
 iff $\kappa(x, y) = 0$.

By Witt's Lemma, it is routine to show that

Theorem

The graph Γ is a strongly regular graph.

There are three types of finite classical polar spaces: orthogonal polar spaces, symplectic polar spaces and Hermitian polar spaces.

	\mathcal{P}_r	$n = \dim V$	ovoid number θ_r	ϵ			
S	W(2r-1,q)	2 <i>r</i>	q'+1	0			
0	$Q^+(2r-1,q)$	2r	$q^{r-1}+1$	1			
	$Q^{-}(2r+1,q)$	2r + 2	$q^{r+1}+1$	1			
	Q(2r,q)	2r + 1	q'+1	1			
U	H(2r, q)	2r + 1	$q^{r+rac{1}{2}}+1$	1/2			
	H(2r-1,q)	2 <i>r</i>	$q^{r-rac{1}{2}}+1$	1/2			
Each generator of \mathcal{P}_r has size $rac{q^r-1}{q-1}$ and $ \mathcal{P}_r =rac{q^r-1}{q-1} heta_r$, where $ heta_r=q^{n-r-\epsilon}+1$							

Table: Finite classical polar spaces

Weicong Li (GBU)

Suppose that $r \ge 2$, and let \mathcal{M} be a nonempty set of \mathcal{P}_r . Then \mathcal{M} is an *intriguing set* if there exist two constants h_1, h_2 such that

$$|P^{\perp}\cap\mathcal{M}|=egin{cases}h_1,&P\in\mathcal{M}\h_2,&P
otin\mathcal{M}, \end{cases}$$

where P ranges over the points of \mathcal{P}_r and P^{\perp} is the set of points collinear with P.

Weicong Li (GBU)

Intriguing Sets in Finite Classical Polar Space

17 / 40

There are two types of intriguing sets:

(1) *i*-tight sets: $|\mathcal{M}| = i \cdot \frac{q^{r-1}}{q-1}$, $h_1 = q^{r-1} + i \cdot \frac{q^{r-1} - 1}{q-1}$, $h_2 = i \cdot \frac{q^{r-1} - 1}{q-1}$; (2) *m*-ovoids: $|\mathcal{M}| = m\theta_r$,

$$h_1 = (m-1)\theta_{r-1} + 1, \quad h_2 = m\theta_{r-1}.$$

J. Bamberg, S. Kelly, M. Law, and T. Penttila. Tight sets and *m*-ovoids of finite polar spaces. J. Combin. Theory Ser. A, 114(7):1293–1314, 2007, A = 1000, A = 10000, A = 1000, A = 1000, A = 1000, A = 10000, A = 1000

Weicong Li (GBU)

Intriguing Sets in Finite Classical Polar Space

Example:

- (1) \mathcal{P}_r itselt is both a θ_r -tight set and $\frac{q^r-1}{q-1}$ -ovoid (trivial example).
- (2) Each generator (t.i. or t.s. *r*-space) is a 1-tight set.
- (3) For two disjoint intriguing sets, their union is also an intriguing set.

Lemma

An i-tight set and an m-ovoid share mi points in common.

Sktech of proof: The eigenvectors with distinct eigenvalues are orthogonal.

Lemma (Feng, L., Xiang, 2024+)

Let \mathcal{M} be a subset of size $i\frac{q^r-1}{q-1}$ or $m\theta_r$ in \mathcal{P}_r for some integer i or m, and let h_1, h_2 be the corresponding parameters determined by $|\mathcal{M}|$. Then the following are equivalent:

- (1) \mathcal{M} is an intriguing set in \mathcal{P}_r ;
- (2) $|P^{\perp} \cap \mathcal{M}| = h_1$ for all $P \in \mathcal{M}$;

(3) $|P^{\perp} \cap \mathcal{M}| = h_2$ for all $P \in \mathcal{P}_r \setminus \mathcal{M}$.

Sketch of Proof: (1) \Leftrightarrow (2), i.e., $\sum_{P \in \mathcal{P}_r \setminus \mathcal{M}} (|P^{\perp} \cap \mathcal{M}| - h_2)^2 = 0.$

T. Feng, L., and Q. Xiang. A new family of $(q^4 + 1)$ -tight sets with an automorphism group $F_4(q)$, arXiv:2305:16119.

Weicong Li (GBU)

э

- (日)

э

Here we only list some examples of Hermitian polar space.

- Non-degenerate hyperplane sections: Q is a nonsingular point. $Q^{\perp} \cap H(2r, q^2) \cong H(2r - 1, q)$: $(q^{2r-1} + 1)$ -tight set; $Q^{\perp} \cap H(2r - 1, q^2) \cong H(2r - 2, q^2)$: $(q^{2r-1} - 1)/(q^2 - 1)$ -ovoids,
- Subfield embeddings: $W(2r-1,q) \hookrightarrow H(2r-q,q^2)$: (q+1)-tight sets.
- ③ Field reduction: *i*-tight set in $H(2r - 1, q^{2e}) \Rightarrow i$ -tight set in $H(2er - 1, q^2)$
- Oerivation.

J. Bamberg, S. Kelly, M. Law, and T. Penttila. Tight sets and *m*-ovoids of finite polar spaces. J. Combin. Theory Ser. A, 114(7):1293–1314, 2007 $\rightarrow 4 \equiv 5 = 4$

Theorem (Feng, L., 2021)

Suppose that O is a transitive ovoid of $H(n, q^2)$, $n \ge 3$ odd. Then n = 3, and O is projectively equivalent to one of the following:

- (1) a classical ovoid $H(2, q^2)$, with full stabilizer $P\Gamma U(3, q^2)$;
- (2) a Singer-type ovoid for even $q = 2^d$, with full stabilizer C_{q^3+1} : 6d if q > 2;
- (3) an exceptional ovoid of $H(3, 5^2)$, with full stabilizer $C_2 \times (C_3 \times PSL(2,7)) : 2;$
- (4) an ovoid of $H(3, 8^2)$, with full stabilizer C_{57} : 9;
- (5) an ovoid of $H(3, 8^2)$, with full stabilizer C_{57} : 18.

Problem: Give the non-existence of ovoids of finite classical polar spaces of high rank (≥ 5) ?

³T. Feng, L. On transitive ovoids of finite hermitian polar spaces. Combinatorica **41** (2021), 645-667.

Let $H \leq \Gamma L(V)$ be almost simple such that

$$L = H^{(\infty)}, M = N_{\Gamma}(L).$$

\mathcal{P}	L	#L-orbits	т	Condition
Q(6,q)	${}^{2}G_{2}(q)$	3	$1, q, q^2$	p = 3, f odd
Q(6,q)	$SU_3(q)$	2	$1, q + q^2$	p ³
$Q^{+}(7,q)$	$SL_2(q^3)$	2	$1, q + q^2 + q^3$	p=2
$Q^{+}(7,q)$	$SU_3(q)$	5	1, $\{q+q^2\}$, q^3	$q = 2 \pmod{3}$
W(3,q)	Sz(q)	2	1, q	p = 2, f odd

The ovoids that appear in the table are the Ree ovoid, unitary ovoid, Desarguesian ovoid and Suzuki ovoid respectively.

Weicong Li (GBU)

The Klein correspondence is a bijection between lines of PG(3, q) and singular points of $Q^+(5, q)$.

C-L line classes with parameter x

x-tight sets in $Q^+(5,q)$

Feng and Xiang et al developed a method to construct many interesting families of C-L lines classes (intriguing sets) with "small" automorphism groups.

T. Feng, K. Momihara, M. Rodgers and Q. Xiang, and H. Zou. Cameron-Liebler line classes with parameter $x = (q + 1)^2/3$. *Adv. Math.* **85** (2021), Paper No. 107780, 31 pp.

The methods for constructing intriguing sets can be roughly classified into three types:

- traditional geometrical methods.
- group-theoretic methods: highly symmetry (CFSG).
- the combination of geometrical and algebraic methods: "small" automorphism group.

26 / 40

Weicong Li (GBU)

Intriguing Sets in Finite Classical Polar Space

September 29th, 2024

< 行

э

Theorem (Feng, L., Xiang, 2023+)

Let $q = p^{f}$ be a prime power. The classical polar space Q(24, q) or $Q^{-}(25, q)$ admits a $(q^{4} + 1)$ -tight set with an automorphism group isomorphic to the exceptional group $F_{4}(q)$ according as $q = 3^{f}$ or q = 2 (mod 3).

The novelty of our construction is the use of the exceptional group $F_4(q)$ on its minimal module over \mathbb{F}_q .

Octonions

The octonion \mathcal{O} (Cayley number) is an 8-dimensional algebra with (orthonormal) basis $\mathbf{1}, e_1, \ldots, e_7$ satisfying $e_i^2 = -1$ and the multiplication derived by the following Fano plane.⁵ Let N be the norm of \mathcal{O} , $N(x) = x\overline{x}$. Then the form f is induced from N. The automorphism group $\operatorname{Aut}(\mathcal{O}) = G_2(q)$ fixes the vector $\mathbf{1}$ for some prime power q ($G_2(q) < \Omega_7(q) < \Omega_8^+(q)$).

Figure: The multiplication table of ${\mathcal O}$ from the Fano plane

Weicong Li (GBU)

Let N be the norm of \mathcal{O} such that $N(x) = x\overline{x}$, where \overline{x} is the octonion conjugate of x. Then N defines the quadric $Q^+(7, q)$, and the corresponding bilinear form B is induced from N:

$${\mathcal B}(x,y)={\mathcal N}(x+y)-{\mathcal N}(x)-{\mathcal N}(y), x,y\in {\mathcal O}.$$

The automorphism group $\operatorname{Aut}(\mathcal{O}) = G_2(q)$ fixes the vector **1** for some prime power q ($G_2(q) < \Omega_7(q) < \Omega_8^+(q)$).

The group $G_2(q)$ is the automorphism group of the classical generalized hexagon $g \in W$ Weicong Li (GBU) Intriguing Sets in Finite Classical Polar Space September 29th, 2024 30/40

The symplectic basis for the octonions

Let $\{x_1, x_2, \ldots, x_8\}$ be the (symplectic) basis, which is more useful for looking at the subgroup structure. In particular, it works in the characteristic 2.

	x_1	<i>x</i> ₂	<i>x</i> 3	<i>x</i> ₄	<i>x</i> 5	<i>x</i> 6	<i>x</i> 7	<i>x</i> 8
x_1					x_1	<i>x</i> ₂	$-x_{3}$	<i>x</i> 4
<i>x</i> ₂			$-x_{1}$	<i>x</i> ₂			$-x_{5}$	<i>x</i> 6
<i>x</i> 3		<i>x</i> ₁		<i>x</i> 3		$-x_{5}$		<i>X</i> 7
<i>X</i> 4	<i>x</i> ₁			<i>X</i> 4		<i>x</i> 6	<i>X</i> 7	
<i>X</i> 5		<i>x</i> ₂	<i>x</i> 3		<i>X</i> 5			<i>x</i> 8
<i>x</i> 6	$-x_{2}$		$-x_{4}$		<i>x</i> 6		<i>x</i> 8	
<i>x</i> ₇	<i>x</i> 3	$-x_{4}$			<i>x</i> 7	$-x_{8}$		
<i>x</i> 8	$-x_{5}$	$-x_{6}$	<i>x</i> 7	<i>x</i> 8				

Table: The multiplication table of the new basis for $\ensuremath{\mathcal{O}}$

The octonion conjugate swaps x_4, x_5 and maps the other x_i 's to their negation.

Let ${\cal A}$ be a 27-dimensional algebra consisting of 3×3 Hermitian matrices over the octonions:

$$\mathbf{v} = \begin{pmatrix} \lambda_0 & F & \overline{E} \\ \overline{F} & \lambda'_0 & D \\ E & \overline{D} & \lambda''_0 \end{pmatrix} = (\lambda_0, \lambda'_0, \lambda''_0 | D, E, F), \ D, E, F \in \mathcal{O}$$

where – is the octonion conjugation. The multiplication is defined by $u \circ v = uv + vu$ for any $u, v \in A$. The automorphism group of A is exactly the exceptional group $F_4(q)$.

Here the characteristic of \mathbb{F} is not 2 or 3, \mathcal{A} can be viewed as the Albert algebra (the exceptional Jordan algebra), Bray et al called \mathcal{A} the Albert space.

We take the following basis of \mathcal{A} :

$$w_0 = (1, 0, 0|0, 0, 0) \text{ and } w_i = (0, 0, 0|x_i, 0, 0), \ 0 < i \le 8$$

 $w'_0 = (0, 1, 0|0, 0, 0) \text{ and } w'_i = (0, 0, 0|0, x_i, 0), \ 0 < i \le 8$
 $w''_0 = (0, 0, 1|0, 0, 0) \text{ and } w''_i = (0, 0, 0|0, 0, x_i), \ 0 < i \le 8$

Then we can write $v = \sum_{t=0}^{8} (\lambda_t w_t + \lambda'_t w'_t + \lambda''_t w''_t) \in \mathcal{A}$ with trace $\operatorname{Tr}(v) = \lambda_0 + \lambda'_0 + \lambda''_0$, and $I = w_0 + w'_0 + w''_0$.

Suppose q is odd. We derive a quadratic form from $\frac{1}{2}$ Tr $(v \circ v)$ as follows:

$$Q'(v) = \frac{1}{2}(\lambda_0^2 + \lambda_0'^2 + \lambda_0''^2) + \sum_{t=1}^4 (\lambda_t \lambda_{9-t} + \lambda_t' \lambda_{9-t}' + \lambda_t'' \lambda_{9-t}'')$$

The minimal module of $F_4(q)$ (or $E_6(q)$)

Write $U = \{v \in \mathcal{A} : Tr(v) = 0\}$, $U' = \langle I \rangle_{\mathbb{F}_q}$. Then Q_0 is an $F_4(q)$ -invariant quadratic form on U induced by Q', which also works for even q:

$$Q_0(\mathbf{v}) = \lambda_0^2 + \lambda_0 \lambda_0' + \lambda_0'^2 + \sum_{t=1}^4 (\lambda_t \lambda_{9-t} + \lambda_t' \lambda_{9-t}' + \lambda_t'' \lambda_{9-t}'').$$

Define $W := U/(U \cap U')$, which is an irreducible minimal $F_4(q)$ -module of dimension 25 or 26 according as the characteristic p is 3 or not. Let Q be the quadratic form induced from Q_0 . Then

$$(W, Q) = \begin{cases} Q(24, q), & \text{if } p = 3; \\ Q^{-}(25, q), & \text{if } p = 2 \pmod{3}; \\ Q^{+}(25, q), & \text{otherwise.} \end{cases}$$

34 / 40

The similarity group of the Dickson-Freudenthal determinant (a cubic form) is $\tilde{E}_6(q)$, and $E_6(q) = \tilde{E}_6(q)/Z(\tilde{E}_6(q))$. The center has order 3 or 1 according as $q = 1 \pmod{3}$ or not.

Theorem (Aschbacher, 1987)

There are three orbits of $\widetilde{E}_6(q)$ on nonzero vectors of \mathcal{A} , which are called the white, grey, black vectors, respectively.

Correspondingly, the 1-dimensional subspace spanned by a white (grey or black) vector is called a white (grey or black) point. The stabilizer of $I := w_0 + w'_0 + w''_0$ in $\widetilde{E}_6(q)$ is $F_4(q)$.

M. Aschbacher. The 27-dimensional module for E_6 . I. Invent Math, 89:159–195, 1987.

If $H \leq \mathsf{PF}(V, \kappa)$ has exactly two orbits $\mathcal{M}_1, \mathcal{M}_2$ on the isotropic (singular) points of $\mathcal{P}_r, \mathcal{M}_1, \mathcal{M}_2$ are intriguing sets of the same type.

Corollary (Cohen and Cooperstein, 1988)

If $q = 3^{f}$, there are two $F_{4}(q)$ -orbits on points of W = Q(24, q). Since the two orbits have size

$$rac{q^{12}-1}{q-1}(q^4+1)$$
 and $rac{q^{12}-1}{q-1}(q^{12}-q^8)$

respectively, which are not divisible by the ovoid number $q^{12} + 1$. Hence they are tight sets.

A.M. Cohen and B.N. Cooperstein. The 2-spaces of the standard $E_6(q)$ -module *Geometriae Dedicata*, 25:467–480, 1988. Recall that all white points of \mathcal{A} form an $\widetilde{E}_6(q)$ -orbit. The group $F_4(q)$ split the orbit (white points) into two parts according as they are singular or nonsingular. Let M_1 be the white (singular) vectors in U, and denote \mathcal{M}_1 by the corresponding set of projective (white) points.

Theorem

If $q = 2 \pmod{3}$, M_1 is a $(q^4 + 1)$ -tight set of $Q^-(25, q)$ with an automorphism group $F_4(q)$.

The case $q = 2 \pmod{3}$

Lemma

There are $q^{15} + q^{12} - q^4 - 1$ elements of M_1 that are perpendicular to w_1 .

Sketch of proof: the white vectors can be classified into the following three types:

- (1) $v = f \cdot (A\overline{A}, B\overline{B}, 1 | \overline{B}, A, \overline{A}B)$ for some $f \in \mathbb{F}_q^*$ and $A, B \in \mathbb{O}$ such that $A\overline{A} + B\overline{B} + 1 = 0$,
- (II) $v = e \cdot (C\overline{C}, 1, 0 \mid A, \overline{CA}, C)$ for some $e \in \mathbb{F}_q^*$ and octonions A, C such that $A\overline{A} = 0$, $C\overline{C} + 1 = 0$,
- (III) $v = (0, 0, 0 \mid D, E, F)$, where D, E, F are octonions such that

$$D\overline{D} = E\overline{E} = F\overline{F} = 0, \quad DE = EF = FD = 0.$$

Then we enumerate the number of white vectors perpendicular to w_1 .

Here we need to some facts about the left and right annihilators in \mathbb{O} . \mathbb{O}

- When *q* = 2, there are exactly three orbits on *W*, all of which are tight sets.
- Question: In the case $q = 2 \pmod{3}$, are other orbits tight sets? There exists one orbit with size $\frac{q^{12}-1}{q-1}(q^{12}-q^8)$. We conjecture that it is also a tight set.

39 / 40

Thanks for your attention!

э